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Background on cellular noise
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3 stable phenotypic variants with the same genome (memory)
¥ in human cells: some proteins fluctuate between the low and high
range on the timescale of 2 cell cycles!
¥ proteins in the same pathway fluctuate in correlated fashion

¥ adaptive advantage upon environmental challenge

(6) Kaern, M., Eiston, T.C., Blake, W.J. and Collins, J.J. Stochasticity in gene
expression: from theories to phenotypes. Nat. Rev. Genet, 6(6):451-464, 2005.




Problems 1in differentiation
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¥ tissue specific many lineage markers
promoters ¥ mouse embryonic stem cells:

remove stem cell medium =>
spontaneous differentiation to

% complicated interplay between many lineages
many regulators ¥ single cell plating of
¥ directing differentiation is very hematopoietic stem cells =>

difficult... (<50% efficiency) macrophage, erythrocyte, platelet



Does cellular noise play a role in
ditterentication?

% Lets find this noise...

s immunofluorescence
flow cytometry of cell
surface Sca-1 protein

¥ clonal population

¥ 1000-fold range!

s stable over time
3% much larger than
measurement noise

¥ NOT just cell size or cycle
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Figure 1| Robust clonal heterogeneity. a, b, Heterogeneity among clonal
cells in Sca-1 protein expression, detected by immunofluorescence flow
cytometry (a), was significantly larger than the resolution limit of flow
cytometry approximated by measurement of reference fluorescent MESF**
beads (b). The dashed lines show the difference in spread of the distributions
as explained in the text. ¢, Stability of clonal heterogeneity in Sca-1 over

three weeks.
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How does the heterogeneity arise?

Experiment
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¥ Lets FACS sort the subpopulations!
¥ Low, Med, High Sca-1
s culture the fractions
¥ slow restoration of full heterogeneity
(> 12 cell doublings) !

¥ also works with single-cell clones

(very slowly...):
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Figure 2 | Restoration of heterogeneity from sorted cell fractions. a, Clonal
cells with the highest (Sca- 1780 ‘middle (Sca-1™9) and lowest (Sca-1'°%) 15%
Sca-1 expression independently re-established the parental extent of clonal
heterogeneity after 216 h in separate culture. As an example, each cell in the
Sca-1"8" experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right).



What drives the heterogeneity?

¥ A few things to exclude:
¥ NO differential growth of

*

Sca-1 subpopulations

4

Jja ! b
A

N w

-

Growth rate (fold/day)

Growth Rate (fold/day)
N

0 2 4 6 8 10 12
Time after FACS sorting (days)

Sca1*™ Sca1™  Sca1"®"

mutations are too slow (9
days, 12 cell divisions)

3 widening of distribution too

fast for uneven partitioning
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¥ What governs Sca-1 expression?
¥ circuitry not known
¥ explicit modeling unfeasible

¥ Phenomenological approach
% find class of stochastic
processes that can explain
the data
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What drives the heterogeneity?

Experiment
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¥ rugged landscape 1441

3% multiple meta-stable states

% relaxation within basins
(sub-populations!)

% stochastic transition Sca-1 expypses nlndependently re- estabhshed the parental extent of clonal
Sy enelty after 216 h in separate culture. As an example, each cell in the
between states

215n

(N SNSus

A
A
2. Gaussian mixing model o R
v
..H

AP

ca-1"h experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right). b, ¢, The temporal evolution of the
means [, , (b) and weights w, , (c) for the Sca- 1high GMM subpopulations 1
and 2. The evolution of the weights was fitted to a sigmoidal function

(c, dotted curves). Black dashed lines, equilibrium values for y; and w;.

Overlap of 2 Gaussians!




Hidden surprise in Supplementary
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¥ does the fitted line mean anything?

Best fit: relative
population size AFFECTS

Autocrine

transition ratesl! signaling




A cell population with two states!

noise

low Sca-1

¥ Is it biologically relevant?
¥ how about differentiation potential?

% Similar in secondary
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Persistent but reversible lineage
preference
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Lineage-specific markers drive a
broad expression program!
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Instructive AND Selective
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Noise drives preference but not
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Outlook
¥ Strengths:

3% I admit I am biased: it’s beautiful (inspiring is a
more accepted way of putting it...)

¥ it really asks us to keep in mind the complexity and
non-linear nature of the regulatory network

¥ supports the idea of cell states as stable attractors

NOISE

% Weaknesses: low Sca-1 _ high Sca-1
s 222 (I have no expertise to judge the

experimental techniques)
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3% More coming ...
¥ Siu Huang’s lab: working on switching cancer cell lines back to
normal
% Jim Collins’s lab (bioengineer, leader in cellular noise control) with
first author Hanna Chang: noise-assisted embryonic stem cell
differentiation



T'hank you!



