Transcriptome-wide noise controls lineage choice in mammalian progenitor cells

Hannah H. Chang, Martin Hemberg, Mauricio Barahona, Donald E. Ingber Sui Huang

Nature 453, 2008.

Background on cellular noise

- * in Eukariotic systems: dominated by bursty transcription
- * phenotypic cell to cell
 variability
- * beautifully measured, quantified, modelled in E. coli and Yeast

*** stable** phenotypic variants with the same genome (memory)
 ***** in human cells: some proteins fluctuate between the low and high range on the timescale of 2 cell cycles!

* proteins in the same pathway **fluctuate in correlated fashion**

*** adaptive advantage** upon environmental challenge

(6) Kaern, M., Elston, T.C., Blake, W.J. and Collins, J.J. *Stochasticity in gene* expression: from theories to phenotypes. Nat. Rev. Genet, 6(6):451–464, 2005.

Problems in differentiation

Instructive

* external signals
 impose a genetic
 program
 * master regulators
 of lineage
 * tissue specific
 promoters

Selective

 * spontaneously differentiated
 subpopulations
 "selected" by
 external factors

 * complicated interplay between many regulators
 * directing differentiation is very difficult... (<50% efficiency)

- * mouse embryonic stem cells: remove stem cell medium => spontaneous differentiation to many lineages * single cell plating of
- * single cell plating of hematopoietic stem cells => macrophage, erythrocyte, platelet

Does cellular noise play a role in differentication?

* Lets find this noise...
* immunofluorescence flow cytometry of cell surface Sca-1 protein
* clonal population
* 1000-fold range!

* stable over time
* much larger than measurement noise
* NOT just cell size or cycle

Figure 1 | **Robust clonal heterogeneity. a**, **b**, Heterogeneity among clonal cells in Sca-1 protein expression, detected by immunofluorescence flow cytometry (**a**), was significantly larger than the resolution limit of flow cytometry approximated by measurement of reference fluorescent MESF²⁴ beads (**b**). The dashed lines show the difference in spread of the distributions as explained in the text. **c**, Stability of clonal heterogeneity in Sca-1 over three weeks.

How does the heterogeneity arise?

- * Lets FACS sort the subpopulations!
 * Low, Med, High Sca-1
 - * culture the fractions
 - * slow restoration of full heterogeneity
 (> 12 cell doublings) !
 - * also works with single-cell clones (very slowly...):

Figure 2 | **Restoration of heterogeneity from sorted cell fractions. a**, Clonal cells with the highest (Sca-1^{high}), middle (Sca-1^{mid}) and lowest (Sca-1^{low}) 15% Sca-1 expression independently re-established the parental extent of clonal heterogeneity after 216 h in separate culture. As an example, each cell in the Sca-1^{high} experiment was theoretically partitioned into one of two GMM subpopulations (blue and red, right).

What drives the heterogeneity?

 * A few things to exclude:
 * NO differential growth of Sca-1 subpopulations

* What governs Sca-I expression?
* circuitry not known
* explicit modeling unfeasible

* Phenomenological approach
 * find class of stochastic
 processes that can explain the data

1. Mean-reverting process
 (Ornstein-Uhlenbeck proces)
 * noisy talaxation process
 towards accequil orium

Goussian distribution

What drives the heterogeneity?

* How about this one?

- 2. Gaussian mixing model ***** rugged landscape
- * multiple meta-stable states
- * relaxation within basins
 (sub-populations!)
- * stochastic transition
 between states

Overlap of 2 Gaussians!

Figure 2 | **Restoration of heterogeneity from sorted cell fractions. a**, Clonal cells with the highest (sca-1^{high}), middle (Sca-1^{mid}) and lowest (Sca-1^{low}) 15% Sca-1 expression independently re-established the parental extent of clonal heterogeneity after 216 h in separate culture. As an example, each cell in the Sca-1^{high} experiment was theoretically partitioned into one of two GMM subpopulations (blue and red, right). b, c, The temporal evolution of the means $\mu_{1,2}$ (**b**) and weights $w_{1,2}$ (**c**) for the Sca-1^{high} GMM subpopulations 1 and 2. The evolution of the weights was fitted to a sigmoidal function (**c**, dotted curves). Black dashed lines, equilibrium values for μ_i and w_i .

Hidden surprise in Supplementary Data!

* does the fitted line mean anything?

Autocrine

signaling

Best fit: relative population size AFFECTS transition rates!

A cell population with two states! * Is it biologically relevant? noise * how about differentiation potential? Similar in secondary * low Sca-1 **Baseline Sca-1** clonal populations high Sca-1 CL6_1 Differentiated Fraction 20% Myeloid Pre-stimulation 10% differentiation rate Sca-1^{low} Sca-1^{high} Sca-1^{mid} CL6 5 а 5 1.0 Days of Epo Fluorescence Intensity 0.5 Low Mid High NOISE low Sca-1 high Sca-1 Erythroid differentiation rate b d С е 1.0 1.0 1.0 1.0 pro-·> myeloid 0.5 0.5 0.5 0.5 erythrocyte cell Low Mid High Low Mid High Low Mid High Low Mid High 21 d Time after sorting in culture 7 d 0 d 14 d before Epo stimulation

Persistent but reversible lineage preference

isotype control

parental EML

LOW Sca-1

MED Sca-1

HIGH Sca-1

103

102

C-Kit

101

differentiated pro-ervthrocytes

The low Sca-I subpopulation is not pre-comitted!
preference lost in 3 weeks (distributions are no longer distinguishable at day 7!)

more than Sca-1 to the difference!

* how about master regulators of lineage ?

Lineage-specific markers drive a broad expression program!

value of gen

Dissimilarit

* these two master regulators do not DECIDE lineage!!!

>3,900 genes L <-> H

distance symbols. The Gata1-containing pixel is boxed in white.

ignal. tal

Instructive AND Selective

Instructive

 terminal differentiation only happens upon stimulation
 master regulator expression is part of the comitment process

Selective

 noise can switch cells between functional states with different differentiation potentials
 master regulators do not always determine
 lineage choice

Noise drives **preference** but not pre-commitment of lineage

Outlook

* Strengths: * I admit I am biased: it's beautiful (inspiring is a more accepted way of putting it...) * it really asks us to keep in mind the complexity and non-linear nature of the regulatory network * supports the idea of cell states as stable attractors * Weaknesses: * ??? (I have no expertise to judge the

experimental techniques)

***** More coming ...

- * Siu Huang's lab: working on switching cancer cell lines back to normal
- * Jim Collins's lab (bioengineer, leader in cellular noise control) with first author Hanna Chang: noise-assisted embryonic stem cell differentiation

Thank you!