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Noise in TF 
availability

Noise in 
transcription 

initiation

Noise in 
translation

in Eukariotic systems: 
dominated by bursty 
transcription!
phenotypic  cell to cell 
variability!
beautifully measured, 
quantified, modelled in 
E. coli and Yeast

stable phenotypic variants with the same genome (memory)!
in human cells: some proteins fluctuate between the low and high 
range on the timescale of 2 cell cycles!!
proteins in the same pathway fluctuate in correlated fashion !

adaptive advantage upon environmental challenge
Kaern, M., Elston, T.C., Blake, W.J. and Collins, J.J. Stochasticity in gene 
expression: from theories to phenotypes. Nat. Rev. Genet, 6(6):451–464, 2005.(6)



Problems in differentiation

external signals 
impose a genetic 
program!
master regulators 
of lineage!
tissue specific 
promoters

Instructive Selective

complicated interplay between 
many regulators!
directing differentiation is very 
difficult... (<50% efficiency)

spontaneously 
differentiated 
subpopulations 
“selected” by 
external factors

mouse embryonic stem cells: 
remove stem cell medium => 
spontaneous differentiation to 
many lineages!
single cell plating of 
hematopoietic stem cells => 
macrophage, erythrocyte, platelet

GATA1

PU-1

promiscuous expression of 
many lineage markers



Does cellular noise play a role in 
differentication?

Lets find this noise...!
immunofluorescence 
flow cytometry of cell 
surface Sca-1 protein!
clonal population!
1000-fold range!

LETTERS

Transcriptome-wide noise controls lineage choice in
mammalian progenitor cells
Hannah H. Chang1,2,3, Martin Hemberg4{, Mauricio Barahona4, Donald E. Ingber1,5 & Sui Huang1{

Phenotypic cell-to-cell variability within clonal populations may
be a manifestation of ‘gene expression noise’1–6, or it may reflect
stable phenotypic variants7. Such ‘non-genetic cell individuality’7

can arise from the slow fluctuations of protein levels8 in mam-
malian cells. These fluctuations produce persistent cell indivi-
duality, thereby rendering a clonal population heterogeneous.
However, it remains unknown whether this heterogeneity may
account for the stochasticity of cell fate decisions in stem cells.
Here we show that in clonal populations of mouse haematopoietic
progenitor cells, spontaneous ‘outlier’ cells with either extremely
high or low expression levels of the stem cell marker Sca-1 (also
known as Ly6a; ref. 9) reconstitute the parental distribution of
Sca-1 but do so only after more than one week. This slow relaxa-
tion is described by a gaussian mixture model that incorporates
noise-driven transitions between discrete subpopulations, sug-
gesting hidden multi-stability within one cell type. Despite clon-
ality, the Sca-1 outliers had distinct transcriptomes. Although
their unique gene expression profiles eventually reverted to that
of the median cells, revealing an attractor state, they lasted long
enough to confer a greatly different proclivity for choosing either
the erythroid or the myeloid lineage. Preference in lineage choice
was associated with increased expression of lineage-specific tran-
scription factors, such as a .200-fold increase in Gata1 (ref. 10)
among the erythroid-prone cells, or a .15-fold increased PU.1
(Sfpi1) (ref. 11) expression among myeloid-prone cells. Thus, clo-
nal heterogeneity of gene expression level is not due to indepen-
dent noise in the expression of individual genes, but reflects
metastable states of a slowly fluctuating transcriptome that is dis-
tinct in individual cells and may govern the reversible, stochastic
priming of multipotent progenitor cells in cell fate decision.

Cell-to-cell variability can be quantified by analysing the disper-
sion of expression levels of a phenotypic marker within a cell popu-
lation. Flow cytometric analysis of EML cells, a multipotent mouse
haematopoietic cell line12, revealed an approximately 1,000-fold
range in the level of the constitutively expressed stem-cell-surface
marker Sca-1 among individual cells within one newly derived clonal
cell population (Fig. 1a). The heterogeneity of Sca-1 expression in
this clonal population was highly consistent between measurements
(Fig. 1c) and could not be attributed to measurement noise (Fig. 1b).
Moreover, cell-cycle-dependent cell size variation contributed only
1% to the observed variability of Sca-1 levels per cell (Supplementary
Discussion and Supplementary Fig. 1).

To characterize the dynamics by which population heterogeneity
arises, cells with the highest, middle and lowest,15% Sca-1 expres-
sion level (denoted henceforth as Sca-1low, Sca-1mid and Sca-1high

fractions) were isolated from one clonal population using

fluorescence-activated cell sorting (FACS). Cells were stripped free
of the staining antibody immediately after isolation and were cul-
tured in standard growth medium. Within hours, all three fractions
showed broadening of the narrow Sca-1 histograms obtained imme-
diately after sorting (Fig. 2a), but more than 9 days elapsed before the
three fractions regenerated Sca-1 histograms similar to that of the
parental (unsorted) population (Fig. 2a). Therefore, the restoration
of the wide range of Sca-1 surface-expression levels is a slow process
(requiring more than 12 cell doublings) that is independent of initial
Sca-1 expression levels. Clonal heterogeneity was also regenerated
from subclones derived from randomly selected individual cells that
had varying initial mean Sca-1 levels (Supplementary Fig. 2).

What drives the regeneration of the parental ‘bell-shaped’ his-
togram from the three sorted population fractions (Fig. 2a)?
Although a variety of mechanisms may in principle underlie this
behaviour (Supplementary Discussion and Supplementary Fig. 3
and 4), we consider here a general theoretical stochastic formulation.
Because the genetic circuitry governing the expression of Sca-1 is
poorly understood13, modelling the process explicitly with genetic
circuits subjected to stochastic dynamics14 is not feasible. Instead,
we took a phenomenological approach to determine which general

1Vascular Biology Programme, Department of Pathology and Surgery, Children’s Hospital and HarvardMedical School, Boston,Massachusetts 02115, USA. 2Programme in Biophysics,
3MD-PhDProgramme, HarvardMedical School, Boston,Massachusetts 02115, USA. 4Department of Bioengineering and Institute forMathematical Sciences, Imperial College London,
South Kensington Campus, London SW72AZ, UK. 5Harvard Institute for Biologically Inspired Engineering, Cambridge,Massachusetts 02139, USA. {Present addresses: Department of
Ophthalmology, Children’s Hospital Boston, Boston, Massachusetts 02215, USA (M.H.); Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4,
Canada (S.H.).
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Figure 1 | Robust clonal heterogeneity. a, b, Heterogeneity among clonal
cells in Sca-1 protein expression, detected by immunofluorescence flow
cytometry (a), was significantly larger than the resolution limit of flow
cytometry approximated by measurement of reference fluorescent MESF24

beads (b). The dashed lines show the difference in spread of the distributions
as explained in the text. c, Stability of clonal heterogeneity in Sca-1 over
three weeks.
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Ly6a, lymphocyte antigen 6 
complex, locus A

stable over time!
much larger than 
measurement noise!
NOT just cell size or cycle

S3. Supplementary Figures 

 

 

 
 

Supplementary Figure 1. Robust clonal heterogeneity. a, Weak correlation between 

cellular Sca-1 expression and cell size (projection area) revealed by Fluorescence 

Intensity – Forward Scatter dot plot. b, Clonal cells in G0/G1 (blue), G2/M (red) and 

combined cell cycle phases (black), distinguished by Hoechst stain (inset) showed minor 

differences in overall range and mean Sca-1 expression.  
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Lets FACS sort the subpopulations!!
Low, Med, High Sca-1!
culture the fractions!
slow restoration of full heterogeneity 
( > 12 cell doublings) !

How does the heterogeneity arise?

class of models of stochastic processes best describes the observed
behaviour. The simplest model would be an elementary mean-
reverting (Ornstein–Uhlenbeck) process15 that includes both noise-
driven diffusion (capturing the generation of cell–cell variability) and
a drift towards the deterministic equilibrium (representing relaxa-
tion to the parental distribution mean; Supplementary Theoretical
Methods). However, a simple Ornstein–Uhlenbeck process describes
the data only poorly, because it fails to recapitulate accurately the
growth of the long left tail (for example, 100-fold range for the
Sca-1high fraction) in the histogram.

An alternative explanation is that the relaxation process is com-
plicated by slow dynamics on a rugged potential landscape that con-
sists of multiple quasi-discrete state transitions, the stochastic nature
of which produces an additional source of variability16. Recent ana-
lysis of human myeloid progenitor cells has provided experimental
evidence for the existence of multiple metastable states17, consistent
with the dynamics of complex gene regulatory networks that control
mammalian cell fates. We thus extended the simple Ornstein–
Uhlenbeck model to include transitions between distinct states
(virtual subpopulations) using a gaussian mixture model (GMM)
as a first approximation to a multimodal system. As quantified by
the Akaike information criterion (Supplementary Theoretical
Methods), the data can be described by a minimal GMM model
comprised of only two distinct states, each described as a gaussian,
the parameters of which were obtained from the observed histograms
in the stationary phase (time$ 9 days).

Our GMM model allowed us to partition cells in every measured
histogram (time point) into two ‘virtual subpopulations’ (blue, sub-
population 1; red, subpopulation 2 in Fig. 2a) on the basis of the
expression values of the individual cells, thus providing the time
evolution of the mean mi and the relative abundance (weight) wi

for each subpopulation i5 1, 2 (Fig. 2b, c and Supplementary
Theoretical Methods). This theoretical description suggests that the
asymmetric broadening of the truncated histograms, as partially
reflected in the changes in m for the two subpopulations (Fig. 2b),
only accounts for a fraction of the restoration of the equilibrium
heterogeneity. In contrast, stochastic transitions between the

subpopulations, as reflected by the evolution of the weights wi, had
a dominant role in the later relaxation to equilibrium. Importantly,
for the Sca-1mid and Sca-1high fractions, changes in wi were initially
negligible until 96 h, at which point the wi exhibited a steep change
before eventually reaching a plateau (Fig. 2c).

In summary, our results indicate that the observed clonal
population heterogeneity of protein expression is not simply the
manifestation of noise around a single, deterministic equilibrium
(attractor) state described by an Ornstein–Uhlenbeck model.
Instead, it is probably the result of processes involving stochastic state
transitions in a system exhibiting multiple stable states17, which may
explain the slow regeneration of the parental heterogeneity.

These results suggest that whole-population averaging of the level
of Sca-1 may not appropriately characterize its biological function.
Instead, owing to the slowness of relaxation to the mean values,
momentary levels of Sca-1 within individual cells may reflect distinct,
enduring functional states that have different biological conse-
quences. Thus, we asked whether clonal heterogeneity in Sca-1 pro-
tein expression correlates with heterogeneity of the differentiation
potential of these cells. Indeed, among the secondary clones gene-
rated from the parental population, the rate of commitment to
pro-erythrocytes in response to erythropoietin (Methods and
Supplementary Fig. 5) was inversely correlated to the baseline mean
Sca-1 expression of each clone (Supplementary Fig. 6). Similarly, for
the three sorted fractions (Fig. 3a), the relative erythroid differenti-
ation rates were distinct, with Sca-1low cells differentiating the fastest,
followed by Sca-1mid and Sca-1high (Fig. 3b). Importantly, although
the Sca-1low fraction differentiated into the erythroid lineage at a rate
sevenfold higher than the Sca-1high fraction (Fig. 3b), the Sca-1low

fraction was not composed of spontaneously and irreversibly pre-
committed pro-erythrocytes. Instead, these cells were still undiffer-
entiated, as evidenced by expression of the stem cell marker c-kit
(also known as Kit), their normal proliferation capacity (Supple-
mentary Fig. 7) and their ability to reconstitute the parental his-
togram (Fig. 2a).

When we stimulated erythroid differentiation at various later time
points after sorting, namely, on days 7, 14 and 21 of culture after
sorting (as the Sca-1 histograms became more similar to each other
while restoring the parental distribution), the difference in the eryth-
roid differentiation rate between the Sca-1low and Sca-1high fractions
was gradually lost (Fig. 3b–e). Surprisingly, despite the near complete
convergence of the Sca-1 histograms at day 7, variability in differ-
entiation kinetics was consistently detectable beyond 14 days after
sorting (Fig. 3d). This suggests that clonal heterogeneity in Sca-1
expression controls differentiation potential but constitutes only
a one-dimensional projection of separate states in the high-
dimensional space of gene expression levels17. To reveal additional
dimensions, we looked for correlated heterogeneity in other pro-
teins and investigated whether expression of the erythroid-fate-
determining transcription factor Gata1 (ref. 10) differed among the
Sca-1 fractions. Real-time PCR revealed significantly higher Gata1
messenger RNA levels in the erythroid differentiation-prone Sca-1low

progenitor cells (260-fold increase over the Sca-1high fraction), fol-
lowed by the Sca-1mid (2.7-fold increase over Sca-1high fraction) and
Sca-1high fractions (Fig. 3g); these differences were paralleled by
Gata1 protein levels (Fig. 3i). Importantly, Gata1mRNA expression
among the three sorted fractions at 5 and 14 days after sorting
(Supplementary Fig. 8) mirrored the gradual loss of variability
observed in the differentiation kinetics for the erythroid lineage
(Fig. 3b–e).

Gata1 has an antagonistic role to the myeloid-fate-determining
transcription factor PU.1 in lineage determination; these two tran-
scription factors mutually inhibit each other to regulate the erythroid
versus myeloid fate decision18. Thus, we hypothesized that cells that
are least prone to erythroid differentiation and exhibit low Gata1
expression may have high PU.1 levels, and thus be predisposed to
the myeloid lineage. Indeed, real-time PCR revealed that Sca-1high
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Figure 2 | Restoration of heterogeneity from sorted cell fractions. a, Clonal
cells with the highest (Sca-1high),middle (Sca-1mid) and lowest (Sca-1low) 15%
Sca-1 expression independently re-established the parental extent of clonal
heterogeneity after 216h in separate culture. As an example, each cell in the
Sca-1high experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right). b, c, The temporal evolution of the
means m1,2 (b) and weights w1,2 (c) for the Sca-1

high GMM subpopulations 1
and 2. The evolution of the weights was fitted to a sigmoidal function
(c, dotted curves). Black dashed lines, equilibrium values for mi and wi.
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Supplementary Figure 2. Clonal heterogeneity in Sca-1 expression among single-

cell-derived subclones converged towards that of the original parental clone. 

Population distribution of non-stimulated, baseline Sca-1 expression for four single-cell 

derived subclones (purple, brown, green, blue solid lines) represented by flow cytometry 

histograms exhibited convergence towards the parental clone histogram (red) over eight 

weeks (Wk) in normal growth culture despite one cycle of freeze/thaw after week 5. 

 

also works with single-cell clones 
(very slowly...):

class of models of stochastic processes best describes the observed
behaviour. The simplest model would be an elementary mean-
reverting (Ornstein–Uhlenbeck) process15 that includes both noise-
driven diffusion (capturing the generation of cell–cell variability) and
a drift towards the deterministic equilibrium (representing relaxa-
tion to the parental distribution mean; Supplementary Theoretical
Methods). However, a simple Ornstein–Uhlenbeck process describes
the data only poorly, because it fails to recapitulate accurately the
growth of the long left tail (for example, 100-fold range for the
Sca-1high fraction) in the histogram.

An alternative explanation is that the relaxation process is com-
plicated by slow dynamics on a rugged potential landscape that con-
sists of multiple quasi-discrete state transitions, the stochastic nature
of which produces an additional source of variability16. Recent ana-
lysis of human myeloid progenitor cells has provided experimental
evidence for the existence of multiple metastable states17, consistent
with the dynamics of complex gene regulatory networks that control
mammalian cell fates. We thus extended the simple Ornstein–
Uhlenbeck model to include transitions between distinct states
(virtual subpopulations) using a gaussian mixture model (GMM)
as a first approximation to a multimodal system. As quantified by
the Akaike information criterion (Supplementary Theoretical
Methods), the data can be described by a minimal GMM model
comprised of only two distinct states, each described as a gaussian,
the parameters of which were obtained from the observed histograms
in the stationary phase (time$ 9 days).

Our GMM model allowed us to partition cells in every measured
histogram (time point) into two ‘virtual subpopulations’ (blue, sub-
population 1; red, subpopulation 2 in Fig. 2a) on the basis of the
expression values of the individual cells, thus providing the time
evolution of the mean mi and the relative abundance (weight) wi

for each subpopulation i5 1, 2 (Fig. 2b, c and Supplementary
Theoretical Methods). This theoretical description suggests that the
asymmetric broadening of the truncated histograms, as partially
reflected in the changes in m for the two subpopulations (Fig. 2b),
only accounts for a fraction of the restoration of the equilibrium
heterogeneity. In contrast, stochastic transitions between the

subpopulations, as reflected by the evolution of the weights wi, had
a dominant role in the later relaxation to equilibrium. Importantly,
for the Sca-1mid and Sca-1high fractions, changes in wi were initially
negligible until 96 h, at which point the wi exhibited a steep change
before eventually reaching a plateau (Fig. 2c).

In summary, our results indicate that the observed clonal
population heterogeneity of protein expression is not simply the
manifestation of noise around a single, deterministic equilibrium
(attractor) state described by an Ornstein–Uhlenbeck model.
Instead, it is probably the result of processes involving stochastic state
transitions in a system exhibiting multiple stable states17, which may
explain the slow regeneration of the parental heterogeneity.

These results suggest that whole-population averaging of the level
of Sca-1 may not appropriately characterize its biological function.
Instead, owing to the slowness of relaxation to the mean values,
momentary levels of Sca-1 within individual cells may reflect distinct,
enduring functional states that have different biological conse-
quences. Thus, we asked whether clonal heterogeneity in Sca-1 pro-
tein expression correlates with heterogeneity of the differentiation
potential of these cells. Indeed, among the secondary clones gene-
rated from the parental population, the rate of commitment to
pro-erythrocytes in response to erythropoietin (Methods and
Supplementary Fig. 5) was inversely correlated to the baseline mean
Sca-1 expression of each clone (Supplementary Fig. 6). Similarly, for
the three sorted fractions (Fig. 3a), the relative erythroid differenti-
ation rates were distinct, with Sca-1low cells differentiating the fastest,
followed by Sca-1mid and Sca-1high (Fig. 3b). Importantly, although
the Sca-1low fraction differentiated into the erythroid lineage at a rate
sevenfold higher than the Sca-1high fraction (Fig. 3b), the Sca-1low

fraction was not composed of spontaneously and irreversibly pre-
committed pro-erythrocytes. Instead, these cells were still undiffer-
entiated, as evidenced by expression of the stem cell marker c-kit
(also known as Kit), their normal proliferation capacity (Supple-
mentary Fig. 7) and their ability to reconstitute the parental his-
togram (Fig. 2a).

When we stimulated erythroid differentiation at various later time
points after sorting, namely, on days 7, 14 and 21 of culture after
sorting (as the Sca-1 histograms became more similar to each other
while restoring the parental distribution), the difference in the eryth-
roid differentiation rate between the Sca-1low and Sca-1high fractions
was gradually lost (Fig. 3b–e). Surprisingly, despite the near complete
convergence of the Sca-1 histograms at day 7, variability in differ-
entiation kinetics was consistently detectable beyond 14 days after
sorting (Fig. 3d). This suggests that clonal heterogeneity in Sca-1
expression controls differentiation potential but constitutes only
a one-dimensional projection of separate states in the high-
dimensional space of gene expression levels17. To reveal additional
dimensions, we looked for correlated heterogeneity in other pro-
teins and investigated whether expression of the erythroid-fate-
determining transcription factor Gata1 (ref. 10) differed among the
Sca-1 fractions. Real-time PCR revealed significantly higher Gata1
messenger RNA levels in the erythroid differentiation-prone Sca-1low

progenitor cells (260-fold increase over the Sca-1high fraction), fol-
lowed by the Sca-1mid (2.7-fold increase over Sca-1high fraction) and
Sca-1high fractions (Fig. 3g); these differences were paralleled by
Gata1 protein levels (Fig. 3i). Importantly, Gata1mRNA expression
among the three sorted fractions at 5 and 14 days after sorting
(Supplementary Fig. 8) mirrored the gradual loss of variability
observed in the differentiation kinetics for the erythroid lineage
(Fig. 3b–e).

Gata1 has an antagonistic role to the myeloid-fate-determining
transcription factor PU.1 in lineage determination; these two tran-
scription factors mutually inhibit each other to regulate the erythroid
versus myeloid fate decision18. Thus, we hypothesized that cells that
are least prone to erythroid differentiation and exhibit low Gata1
expression may have high PU.1 levels, and thus be predisposed to
the myeloid lineage. Indeed, real-time PCR revealed that Sca-1high
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Figure 2 | Restoration of heterogeneity from sorted cell fractions. a, Clonal
cells with the highest (Sca-1high),middle (Sca-1mid) and lowest (Sca-1low) 15%
Sca-1 expression independently re-established the parental extent of clonal
heterogeneity after 216h in separate culture. As an example, each cell in the
Sca-1high experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right). b, c, The temporal evolution of the
means m1,2 (b) and weights w1,2 (c) for the Sca-1

high GMM subpopulations 1
and 2. The evolution of the weights was fitted to a sigmoidal function
(c, dotted curves). Black dashed lines, equilibrium values for mi and wi.
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class of models of stochastic processes best describes the observed
behaviour. The simplest model would be an elementary mean-
reverting (Ornstein–Uhlenbeck) process15 that includes both noise-
driven diffusion (capturing the generation of cell–cell variability) and
a drift towards the deterministic equilibrium (representing relaxa-
tion to the parental distribution mean; Supplementary Theoretical
Methods). However, a simple Ornstein–Uhlenbeck process describes
the data only poorly, because it fails to recapitulate accurately the
growth of the long left tail (for example, 100-fold range for the
Sca-1high fraction) in the histogram.

An alternative explanation is that the relaxation process is com-
plicated by slow dynamics on a rugged potential landscape that con-
sists of multiple quasi-discrete state transitions, the stochastic nature
of which produces an additional source of variability16. Recent ana-
lysis of human myeloid progenitor cells has provided experimental
evidence for the existence of multiple metastable states17, consistent
with the dynamics of complex gene regulatory networks that control
mammalian cell fates. We thus extended the simple Ornstein–
Uhlenbeck model to include transitions between distinct states
(virtual subpopulations) using a gaussian mixture model (GMM)
as a first approximation to a multimodal system. As quantified by
the Akaike information criterion (Supplementary Theoretical
Methods), the data can be described by a minimal GMM model
comprised of only two distinct states, each described as a gaussian,
the parameters of which were obtained from the observed histograms
in the stationary phase (time$ 9 days).

Our GMM model allowed us to partition cells in every measured
histogram (time point) into two ‘virtual subpopulations’ (blue, sub-
population 1; red, subpopulation 2 in Fig. 2a) on the basis of the
expression values of the individual cells, thus providing the time
evolution of the mean mi and the relative abundance (weight) wi

for each subpopulation i5 1, 2 (Fig. 2b, c and Supplementary
Theoretical Methods). This theoretical description suggests that the
asymmetric broadening of the truncated histograms, as partially
reflected in the changes in m for the two subpopulations (Fig. 2b),
only accounts for a fraction of the restoration of the equilibrium
heterogeneity. In contrast, stochastic transitions between the

subpopulations, as reflected by the evolution of the weights wi, had
a dominant role in the later relaxation to equilibrium. Importantly,
for the Sca-1mid and Sca-1high fractions, changes in wi were initially
negligible until 96 h, at which point the wi exhibited a steep change
before eventually reaching a plateau (Fig. 2c).

In summary, our results indicate that the observed clonal
population heterogeneity of protein expression is not simply the
manifestation of noise around a single, deterministic equilibrium
(attractor) state described by an Ornstein–Uhlenbeck model.
Instead, it is probably the result of processes involving stochastic state
transitions in a system exhibiting multiple stable states17, which may
explain the slow regeneration of the parental heterogeneity.

These results suggest that whole-population averaging of the level
of Sca-1 may not appropriately characterize its biological function.
Instead, owing to the slowness of relaxation to the mean values,
momentary levels of Sca-1 within individual cells may reflect distinct,
enduring functional states that have different biological conse-
quences. Thus, we asked whether clonal heterogeneity in Sca-1 pro-
tein expression correlates with heterogeneity of the differentiation
potential of these cells. Indeed, among the secondary clones gene-
rated from the parental population, the rate of commitment to
pro-erythrocytes in response to erythropoietin (Methods and
Supplementary Fig. 5) was inversely correlated to the baseline mean
Sca-1 expression of each clone (Supplementary Fig. 6). Similarly, for
the three sorted fractions (Fig. 3a), the relative erythroid differenti-
ation rates were distinct, with Sca-1low cells differentiating the fastest,
followed by Sca-1mid and Sca-1high (Fig. 3b). Importantly, although
the Sca-1low fraction differentiated into the erythroid lineage at a rate
sevenfold higher than the Sca-1high fraction (Fig. 3b), the Sca-1low

fraction was not composed of spontaneously and irreversibly pre-
committed pro-erythrocytes. Instead, these cells were still undiffer-
entiated, as evidenced by expression of the stem cell marker c-kit
(also known as Kit), their normal proliferation capacity (Supple-
mentary Fig. 7) and their ability to reconstitute the parental his-
togram (Fig. 2a).

When we stimulated erythroid differentiation at various later time
points after sorting, namely, on days 7, 14 and 21 of culture after
sorting (as the Sca-1 histograms became more similar to each other
while restoring the parental distribution), the difference in the eryth-
roid differentiation rate between the Sca-1low and Sca-1high fractions
was gradually lost (Fig. 3b–e). Surprisingly, despite the near complete
convergence of the Sca-1 histograms at day 7, variability in differ-
entiation kinetics was consistently detectable beyond 14 days after
sorting (Fig. 3d). This suggests that clonal heterogeneity in Sca-1
expression controls differentiation potential but constitutes only
a one-dimensional projection of separate states in the high-
dimensional space of gene expression levels17. To reveal additional
dimensions, we looked for correlated heterogeneity in other pro-
teins and investigated whether expression of the erythroid-fate-
determining transcription factor Gata1 (ref. 10) differed among the
Sca-1 fractions. Real-time PCR revealed significantly higher Gata1
messenger RNA levels in the erythroid differentiation-prone Sca-1low

progenitor cells (260-fold increase over the Sca-1high fraction), fol-
lowed by the Sca-1mid (2.7-fold increase over Sca-1high fraction) and
Sca-1high fractions (Fig. 3g); these differences were paralleled by
Gata1 protein levels (Fig. 3i). Importantly, Gata1mRNA expression
among the three sorted fractions at 5 and 14 days after sorting
(Supplementary Fig. 8) mirrored the gradual loss of variability
observed in the differentiation kinetics for the erythroid lineage
(Fig. 3b–e).

Gata1 has an antagonistic role to the myeloid-fate-determining
transcription factor PU.1 in lineage determination; these two tran-
scription factors mutually inhibit each other to regulate the erythroid
versus myeloid fate decision18. Thus, we hypothesized that cells that
are least prone to erythroid differentiation and exhibit low Gata1
expression may have high PU.1 levels, and thus be predisposed to
the myeloid lineage. Indeed, real-time PCR revealed that Sca-1high
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Figure 2 | Restoration of heterogeneity from sorted cell fractions. a, Clonal
cells with the highest (Sca-1high),middle (Sca-1mid) and lowest (Sca-1low) 15%
Sca-1 expression independently re-established the parental extent of clonal
heterogeneity after 216h in separate culture. As an example, each cell in the
Sca-1high experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right). b, c, The temporal evolution of the
means m1,2 (b) and weights w1,2 (c) for the Sca-1

high GMM subpopulations 1
and 2. The evolution of the weights was fitted to a sigmoidal function
(c, dotted curves). Black dashed lines, equilibrium values for mi and wi.
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What drives the heterogeneity?
A few things to exclude:!
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Supplementary Figure 3. Growth rates of sorted fractions. a, The growth rates of the 

Sca-1
Low

 (blue diamonds), Sca-1
Mid

 (magenta squares), Sca-1
High

 (green triangles) sorted 

fractions, and a mock-sorted control (black circles) were calculated as the fold difference 

between two daily measurements. b, The three sorted fractions had comparable growth 

rates overall, as shown by the mean and standard deviation of growth rates over all 11 

times points in a. 

 

 

 
 

Supplementary Figure 4. Sca-1 mRNA levels in sorted fractions. Sca-1 mRNA levels 

in the Sca-1
Low

, Sca-1
Mid

, and Sca-1
High

 fractions analyzed by quantitative RT-PCR did 

not differ significantly. Results represent the mean and standard errors from 

quadruplicate measurements. Each value has been standardized for GAPDH expression 

levels and is expressed as fold induction compared with the levels (set to 1) detected in 

the Sca-1
Low

 sample. (Sca-1
Low
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, p-value > 0.4, Sca-1
Mid

 vs. Sca-1
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, p-value 

> 0.5 by Student's t-test.)
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What governs Sca-1 expression?!
circuitry not known!
explicit modeling unfeasible

Phenomenological approach!
find class of stochastic 
processes that can explain 
the data

1. Mean-reverting process 
(Ornstein–Uhlenbeck process)!

noisy relaxation process 
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distribution



What drives the heterogeneity?
How about this one?

 

 
 
 

 

  
 

rugged landscape!
multiple meta-stable states!
relaxation within basins 
(sub-populations!)!
stochastic transition 
between states

2. Gaussian mixing model

class of models of stochastic processes best describes the observed
behaviour. The simplest model would be an elementary mean-
reverting (Ornstein–Uhlenbeck) process15 that includes both noise-
driven diffusion (capturing the generation of cell–cell variability) and
a drift towards the deterministic equilibrium (representing relaxa-
tion to the parental distribution mean; Supplementary Theoretical
Methods). However, a simple Ornstein–Uhlenbeck process describes
the data only poorly, because it fails to recapitulate accurately the
growth of the long left tail (for example, 100-fold range for the
Sca-1high fraction) in the histogram.

An alternative explanation is that the relaxation process is com-
plicated by slow dynamics on a rugged potential landscape that con-
sists of multiple quasi-discrete state transitions, the stochastic nature
of which produces an additional source of variability16. Recent ana-
lysis of human myeloid progenitor cells has provided experimental
evidence for the existence of multiple metastable states17, consistent
with the dynamics of complex gene regulatory networks that control
mammalian cell fates. We thus extended the simple Ornstein–
Uhlenbeck model to include transitions between distinct states
(virtual subpopulations) using a gaussian mixture model (GMM)
as a first approximation to a multimodal system. As quantified by
the Akaike information criterion (Supplementary Theoretical
Methods), the data can be described by a minimal GMM model
comprised of only two distinct states, each described as a gaussian,
the parameters of which were obtained from the observed histograms
in the stationary phase (time$ 9 days).

Our GMM model allowed us to partition cells in every measured
histogram (time point) into two ‘virtual subpopulations’ (blue, sub-
population 1; red, subpopulation 2 in Fig. 2a) on the basis of the
expression values of the individual cells, thus providing the time
evolution of the mean mi and the relative abundance (weight) wi

for each subpopulation i5 1, 2 (Fig. 2b, c and Supplementary
Theoretical Methods). This theoretical description suggests that the
asymmetric broadening of the truncated histograms, as partially
reflected in the changes in m for the two subpopulations (Fig. 2b),
only accounts for a fraction of the restoration of the equilibrium
heterogeneity. In contrast, stochastic transitions between the

subpopulations, as reflected by the evolution of the weights wi, had
a dominant role in the later relaxation to equilibrium. Importantly,
for the Sca-1mid and Sca-1high fractions, changes in wi were initially
negligible until 96 h, at which point the wi exhibited a steep change
before eventually reaching a plateau (Fig. 2c).

In summary, our results indicate that the observed clonal
population heterogeneity of protein expression is not simply the
manifestation of noise around a single, deterministic equilibrium
(attractor) state described by an Ornstein–Uhlenbeck model.
Instead, it is probably the result of processes involving stochastic state
transitions in a system exhibiting multiple stable states17, which may
explain the slow regeneration of the parental heterogeneity.

These results suggest that whole-population averaging of the level
of Sca-1 may not appropriately characterize its biological function.
Instead, owing to the slowness of relaxation to the mean values,
momentary levels of Sca-1 within individual cells may reflect distinct,
enduring functional states that have different biological conse-
quences. Thus, we asked whether clonal heterogeneity in Sca-1 pro-
tein expression correlates with heterogeneity of the differentiation
potential of these cells. Indeed, among the secondary clones gene-
rated from the parental population, the rate of commitment to
pro-erythrocytes in response to erythropoietin (Methods and
Supplementary Fig. 5) was inversely correlated to the baseline mean
Sca-1 expression of each clone (Supplementary Fig. 6). Similarly, for
the three sorted fractions (Fig. 3a), the relative erythroid differenti-
ation rates were distinct, with Sca-1low cells differentiating the fastest,
followed by Sca-1mid and Sca-1high (Fig. 3b). Importantly, although
the Sca-1low fraction differentiated into the erythroid lineage at a rate
sevenfold higher than the Sca-1high fraction (Fig. 3b), the Sca-1low

fraction was not composed of spontaneously and irreversibly pre-
committed pro-erythrocytes. Instead, these cells were still undiffer-
entiated, as evidenced by expression of the stem cell marker c-kit
(also known as Kit), their normal proliferation capacity (Supple-
mentary Fig. 7) and their ability to reconstitute the parental his-
togram (Fig. 2a).

When we stimulated erythroid differentiation at various later time
points after sorting, namely, on days 7, 14 and 21 of culture after
sorting (as the Sca-1 histograms became more similar to each other
while restoring the parental distribution), the difference in the eryth-
roid differentiation rate between the Sca-1low and Sca-1high fractions
was gradually lost (Fig. 3b–e). Surprisingly, despite the near complete
convergence of the Sca-1 histograms at day 7, variability in differ-
entiation kinetics was consistently detectable beyond 14 days after
sorting (Fig. 3d). This suggests that clonal heterogeneity in Sca-1
expression controls differentiation potential but constitutes only
a one-dimensional projection of separate states in the high-
dimensional space of gene expression levels17. To reveal additional
dimensions, we looked for correlated heterogeneity in other pro-
teins and investigated whether expression of the erythroid-fate-
determining transcription factor Gata1 (ref. 10) differed among the
Sca-1 fractions. Real-time PCR revealed significantly higher Gata1
messenger RNA levels in the erythroid differentiation-prone Sca-1low

progenitor cells (260-fold increase over the Sca-1high fraction), fol-
lowed by the Sca-1mid (2.7-fold increase over Sca-1high fraction) and
Sca-1high fractions (Fig. 3g); these differences were paralleled by
Gata1 protein levels (Fig. 3i). Importantly, Gata1mRNA expression
among the three sorted fractions at 5 and 14 days after sorting
(Supplementary Fig. 8) mirrored the gradual loss of variability
observed in the differentiation kinetics for the erythroid lineage
(Fig. 3b–e).

Gata1 has an antagonistic role to the myeloid-fate-determining
transcription factor PU.1 in lineage determination; these two tran-
scription factors mutually inhibit each other to regulate the erythroid
versus myeloid fate decision18. Thus, we hypothesized that cells that
are least prone to erythroid differentiation and exhibit low Gata1
expression may have high PU.1 levels, and thus be predisposed to
the myeloid lineage. Indeed, real-time PCR revealed that Sca-1high
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Figure 2 | Restoration of heterogeneity from sorted cell fractions. a, Clonal
cells with the highest (Sca-1high),middle (Sca-1mid) and lowest (Sca-1low) 15%
Sca-1 expression independently re-established the parental extent of clonal
heterogeneity after 216h in separate culture. As an example, each cell in the
Sca-1high experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right). b, c, The temporal evolution of the
means m1,2 (b) and weights w1,2 (c) for the Sca-1

high GMM subpopulations 1
and 2. The evolution of the weights was fitted to a sigmoidal function
(c, dotted curves). Black dashed lines, equilibrium values for mi and wi.
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class of models of stochastic processes best describes the observed
behaviour. The simplest model would be an elementary mean-
reverting (Ornstein–Uhlenbeck) process15 that includes both noise-
driven diffusion (capturing the generation of cell–cell variability) and
a drift towards the deterministic equilibrium (representing relaxa-
tion to the parental distribution mean; Supplementary Theoretical
Methods). However, a simple Ornstein–Uhlenbeck process describes
the data only poorly, because it fails to recapitulate accurately the
growth of the long left tail (for example, 100-fold range for the
Sca-1high fraction) in the histogram.

An alternative explanation is that the relaxation process is com-
plicated by slow dynamics on a rugged potential landscape that con-
sists of multiple quasi-discrete state transitions, the stochastic nature
of which produces an additional source of variability16. Recent ana-
lysis of human myeloid progenitor cells has provided experimental
evidence for the existence of multiple metastable states17, consistent
with the dynamics of complex gene regulatory networks that control
mammalian cell fates. We thus extended the simple Ornstein–
Uhlenbeck model to include transitions between distinct states
(virtual subpopulations) using a gaussian mixture model (GMM)
as a first approximation to a multimodal system. As quantified by
the Akaike information criterion (Supplementary Theoretical
Methods), the data can be described by a minimal GMM model
comprised of only two distinct states, each described as a gaussian,
the parameters of which were obtained from the observed histograms
in the stationary phase (time$ 9 days).

Our GMM model allowed us to partition cells in every measured
histogram (time point) into two ‘virtual subpopulations’ (blue, sub-
population 1; red, subpopulation 2 in Fig. 2a) on the basis of the
expression values of the individual cells, thus providing the time
evolution of the mean mi and the relative abundance (weight) wi

for each subpopulation i5 1, 2 (Fig. 2b, c and Supplementary
Theoretical Methods). This theoretical description suggests that the
asymmetric broadening of the truncated histograms, as partially
reflected in the changes in m for the two subpopulations (Fig. 2b),
only accounts for a fraction of the restoration of the equilibrium
heterogeneity. In contrast, stochastic transitions between the

subpopulations, as reflected by the evolution of the weights wi, had
a dominant role in the later relaxation to equilibrium. Importantly,
for the Sca-1mid and Sca-1high fractions, changes in wi were initially
negligible until 96 h, at which point the wi exhibited a steep change
before eventually reaching a plateau (Fig. 2c).

In summary, our results indicate that the observed clonal
population heterogeneity of protein expression is not simply the
manifestation of noise around a single, deterministic equilibrium
(attractor) state described by an Ornstein–Uhlenbeck model.
Instead, it is probably the result of processes involving stochastic state
transitions in a system exhibiting multiple stable states17, which may
explain the slow regeneration of the parental heterogeneity.

These results suggest that whole-population averaging of the level
of Sca-1 may not appropriately characterize its biological function.
Instead, owing to the slowness of relaxation to the mean values,
momentary levels of Sca-1 within individual cells may reflect distinct,
enduring functional states that have different biological conse-
quences. Thus, we asked whether clonal heterogeneity in Sca-1 pro-
tein expression correlates with heterogeneity of the differentiation
potential of these cells. Indeed, among the secondary clones gene-
rated from the parental population, the rate of commitment to
pro-erythrocytes in response to erythropoietin (Methods and
Supplementary Fig. 5) was inversely correlated to the baseline mean
Sca-1 expression of each clone (Supplementary Fig. 6). Similarly, for
the three sorted fractions (Fig. 3a), the relative erythroid differenti-
ation rates were distinct, with Sca-1low cells differentiating the fastest,
followed by Sca-1mid and Sca-1high (Fig. 3b). Importantly, although
the Sca-1low fraction differentiated into the erythroid lineage at a rate
sevenfold higher than the Sca-1high fraction (Fig. 3b), the Sca-1low

fraction was not composed of spontaneously and irreversibly pre-
committed pro-erythrocytes. Instead, these cells were still undiffer-
entiated, as evidenced by expression of the stem cell marker c-kit
(also known as Kit), their normal proliferation capacity (Supple-
mentary Fig. 7) and their ability to reconstitute the parental his-
togram (Fig. 2a).

When we stimulated erythroid differentiation at various later time
points after sorting, namely, on days 7, 14 and 21 of culture after
sorting (as the Sca-1 histograms became more similar to each other
while restoring the parental distribution), the difference in the eryth-
roid differentiation rate between the Sca-1low and Sca-1high fractions
was gradually lost (Fig. 3b–e). Surprisingly, despite the near complete
convergence of the Sca-1 histograms at day 7, variability in differ-
entiation kinetics was consistently detectable beyond 14 days after
sorting (Fig. 3d). This suggests that clonal heterogeneity in Sca-1
expression controls differentiation potential but constitutes only
a one-dimensional projection of separate states in the high-
dimensional space of gene expression levels17. To reveal additional
dimensions, we looked for correlated heterogeneity in other pro-
teins and investigated whether expression of the erythroid-fate-
determining transcription factor Gata1 (ref. 10) differed among the
Sca-1 fractions. Real-time PCR revealed significantly higher Gata1
messenger RNA levels in the erythroid differentiation-prone Sca-1low

progenitor cells (260-fold increase over the Sca-1high fraction), fol-
lowed by the Sca-1mid (2.7-fold increase over Sca-1high fraction) and
Sca-1high fractions (Fig. 3g); these differences were paralleled by
Gata1 protein levels (Fig. 3i). Importantly, Gata1mRNA expression
among the three sorted fractions at 5 and 14 days after sorting
(Supplementary Fig. 8) mirrored the gradual loss of variability
observed in the differentiation kinetics for the erythroid lineage
(Fig. 3b–e).

Gata1 has an antagonistic role to the myeloid-fate-determining
transcription factor PU.1 in lineage determination; these two tran-
scription factors mutually inhibit each other to regulate the erythroid
versus myeloid fate decision18. Thus, we hypothesized that cells that
are least prone to erythroid differentiation and exhibit low Gata1
expression may have high PU.1 levels, and thus be predisposed to
the myeloid lineage. Indeed, real-time PCR revealed that Sca-1high
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Figure 2 | Restoration of heterogeneity from sorted cell fractions. a, Clonal
cells with the highest (Sca-1high),middle (Sca-1mid) and lowest (Sca-1low) 15%
Sca-1 expression independently re-established the parental extent of clonal
heterogeneity after 216h in separate culture. As an example, each cell in the
Sca-1high experiment was theoretically partitioned into one of two GMM
subpopulations (blue and red, right). b, c, The temporal evolution of the
means m1,2 (b) and weights w1,2 (c) for the Sca-1

high GMM subpopulations 1
and 2. The evolution of the weights was fitted to a sigmoidal function
(c, dotted curves). Black dashed lines, equilibrium values for mi and wi.
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Supplementary Figure 15. Results for the GMM binning algorithm for the data in Fig. 2a in 

the main text. From the top, partitions for t = 0, 9, 48, 96, 144, 216 h for the Sca-1Low (left), Sca-

1Mid (center), and Sca-1High (right) time course. For each panel, the sum of the red and blue 

histograms is equivalent to the data in Fig. 2a in the main text. The probabilistic nature of the 

binning algorithm means that the two inferred subpopulations overlap. For all panels, x-axis is the 

log fluorescence and the y-axis is cell number.  
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A cell population with two states!
Is it biologically relevant?!

how about differentiation potential?

progenitor cells have the highest PU.1mRNA levels (17-fold increase
over Sca-1low fraction), followed by the Sca-1mid (3.6-fold increase
over Sca-1low fraction) and Sca-1low fractions (Fig. 3h). These differ-
ences were paralleled by PU.1 protein levels (Fig. 3j). Furthermore,
myeloid differentiation rate was the highest among Sca-1high

cells, followed by Sca-1mid and Sca-1low (Fig. 3f), in response to
granulocyte–macrophage colony-stimulating factor (GM-CSF) and
interleukin 3 (IL-3; Methods and Supplementary Fig. 5). These
results show that within a clonal population of multipotent proge-
nitor cells, spontaneous non-genetic population heterogeneity
primes the cells for different lineage choices.

Because both Gata1 and PU.1 are pivotal lineage-specific tran-
scription factors, we asked whether the marked upregulation of
Gata1 and associated downregulation of PU.1 in the most eryth-
roid-prone Sca-1low cells reflect a particular cellular state in terms
of genome-wide gene expression. Microarray-based mRNA expres-
sion profiling on Sca-1low (L), Sca-1mid (M) and Sca-1high (H) frac-
tions immediately after sorting revealed that these three fractions
differed considerably in their transcriptomes (Fig. 4). Replicate
microarray measurements showed that the observed transcriptome
differences could not be attributed solely to experimental error
(Supplementary Fig. 9). Significance analysis of microarrays
(SAM)19 revealed .3,900 genes that were differentially expressed
between the Sca-1low and Sca-1high fractions at a stringent false detec-
tion rate of 1.5%. The distinct global gene expression profiles of the
three fractions converged to a common pattern within 6 days after
sorting, a progression that can be quantified by the inter-sample
distance metric D5 12R, where R is the Pearson correlation coef-
ficient. The distances between the three profiles decreased from
D(L2M)0 days5 0.027 to D(L2M)6 days5 0.009 and from
D(M2H)0 days5 0.061 to D(M2H)6 days5 0.012 (Fig. 4 and
Supplementary Table 1). Thus, the outlier populations reconstituted
the traits of the parental population not only with respect to their
distribution of Sca-1 expression (Fig. 2a) and differentiation rates
(Fig. 3b–e) but also with respect to their gene expression profiles
across thousands of genes. This global relaxation from both ends of
the parental spectrum towards the centre is predicted by themodel in
which a stable cell phenotype, such as the progenitor state here, is a
high-dimensional attractor state20. It also confirms that the Sca-1
outlier cells were not already irreversibly committed. Nevertheless,
Sca-1low cells exhibited a transcriptome that was clearly more similar
than the Sca-1high cells to the unsorted but maximally differentiated
cells, achieved by culture in erythropoietin for 7 days (7d_Epo)
(Fig. 4): D(L2 7d_Epo)5 0.079 versus D(H2 7d_Epo)5 0.158;
Supplementary Table 1. This is a remarkable feat given the spon-
taneity and stochasticity of the process that generated these
differentiation-prone outlier cells. In fact, with respect to 200 ‘differ-
entiation marker genes’ (Methods), only the Sca-1low cells were stat-
istically similar to the erythropoietin-treated cells (P, 33 10214,
pairwise t-test), whereas the Sca-1mid (P. 0.8) and Sca-1high

(P. 0.6) cells were not, further confirming the transcriptome simi-
larity between the Sca-1low and erythropoietin-treated cells, which
may be related to their increased Gata1 levels.
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Figure 3 | Clonal heterogeneity governs differentiation potential. a–f, Sca-
1low (Low, black), Sca-1mid (Mid, grey) and Sca-1high (High, white) fractions
(a) stimulated by erythropoietin (Epo, b) andGM-CSF (f) immediately after
isolation showed variable differentiation rates into the erythroid and
myeloid lineages, respectively. After 7, 14 and 21 days (d) of post-sort
culture, erythropoietin-treated cells showed convergence in both pre-
stimulation, baseline Sca-1 expression (Fig. 2a) and relative differentiation
rates (b–e). Asterisk, P, 0.001 (two-tailed normal-theory test).

g, h, Quantitative real-time PCRwith reverse transcription analysis ofGata1
(g) and PU.1 (h) mRNA levels in Sca-1-sorted fractions. Means6 s.e.m. of
triplicates shown. Triple asterisk, P, 1025; double asterisk, P, 0.0002;
asterisk, P, 0.003 (one-tailed Student’s t-test). i, j, Western blot analysis of
Gata1 (i) and PU.1 (j) protein levels in Sca-1 fractions (lanes 3–5) andmock-
sorted cells (lane 6). TheMEL cell line (lane 1) was used as a positive control.
G1E and 503 (lane 2) cell lines were negative controls for Gata1 and PU.1,
respectively. Gapdh was the loading control.
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Figure 4 | Clonal heterogeneity of Sca-1 expression reflects transcriptome-
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distance symbols. The Gata1-containing pixel is boxed in white.
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progenitor cells have the highest PU.1mRNA levels (17-fold increase
over Sca-1low fraction), followed by the Sca-1mid (3.6-fold increase
over Sca-1low fraction) and Sca-1low fractions (Fig. 3h). These differ-
ences were paralleled by PU.1 protein levels (Fig. 3j). Furthermore,
myeloid differentiation rate was the highest among Sca-1high

cells, followed by Sca-1mid and Sca-1low (Fig. 3f), in response to
granulocyte–macrophage colony-stimulating factor (GM-CSF) and
interleukin 3 (IL-3; Methods and Supplementary Fig. 5). These
results show that within a clonal population of multipotent proge-
nitor cells, spontaneous non-genetic population heterogeneity
primes the cells for different lineage choices.

Because both Gata1 and PU.1 are pivotal lineage-specific tran-
scription factors, we asked whether the marked upregulation of
Gata1 and associated downregulation of PU.1 in the most eryth-
roid-prone Sca-1low cells reflect a particular cellular state in terms
of genome-wide gene expression. Microarray-based mRNA expres-
sion profiling on Sca-1low (L), Sca-1mid (M) and Sca-1high (H) frac-
tions immediately after sorting revealed that these three fractions
differed considerably in their transcriptomes (Fig. 4). Replicate
microarray measurements showed that the observed transcriptome
differences could not be attributed solely to experimental error
(Supplementary Fig. 9). Significance analysis of microarrays
(SAM)19 revealed .3,900 genes that were differentially expressed
between the Sca-1low and Sca-1high fractions at a stringent false detec-
tion rate of 1.5%. The distinct global gene expression profiles of the
three fractions converged to a common pattern within 6 days after
sorting, a progression that can be quantified by the inter-sample
distance metric D5 12R, where R is the Pearson correlation coef-
ficient. The distances between the three profiles decreased from
D(L2M)0 days5 0.027 to D(L2M)6 days5 0.009 and from
D(M2H)0 days5 0.061 to D(M2H)6 days5 0.012 (Fig. 4 and
Supplementary Table 1). Thus, the outlier populations reconstituted
the traits of the parental population not only with respect to their
distribution of Sca-1 expression (Fig. 2a) and differentiation rates
(Fig. 3b–e) but also with respect to their gene expression profiles
across thousands of genes. This global relaxation from both ends of
the parental spectrum towards the centre is predicted by themodel in
which a stable cell phenotype, such as the progenitor state here, is a
high-dimensional attractor state20. It also confirms that the Sca-1
outlier cells were not already irreversibly committed. Nevertheless,
Sca-1low cells exhibited a transcriptome that was clearly more similar
than the Sca-1high cells to the unsorted but maximally differentiated
cells, achieved by culture in erythropoietin for 7 days (7d_Epo)
(Fig. 4): D(L2 7d_Epo)5 0.079 versus D(H2 7d_Epo)5 0.158;
Supplementary Table 1. This is a remarkable feat given the spon-
taneity and stochasticity of the process that generated these
differentiation-prone outlier cells. In fact, with respect to 200 ‘differ-
entiation marker genes’ (Methods), only the Sca-1low cells were stat-
istically similar to the erythropoietin-treated cells (P, 33 10214,
pairwise t-test), whereas the Sca-1mid (P. 0.8) and Sca-1high

(P. 0.6) cells were not, further confirming the transcriptome simi-
larity between the Sca-1low and erythropoietin-treated cells, which
may be related to their increased Gata1 levels.
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Figure 3 | Clonal heterogeneity governs differentiation potential. a–f, Sca-
1low (Low, black), Sca-1mid (Mid, grey) and Sca-1high (High, white) fractions
(a) stimulated by erythropoietin (Epo, b) andGM-CSF (f) immediately after
isolation showed variable differentiation rates into the erythroid and
myeloid lineages, respectively. After 7, 14 and 21 days (d) of post-sort
culture, erythropoietin-treated cells showed convergence in both pre-
stimulation, baseline Sca-1 expression (Fig. 2a) and relative differentiation
rates (b–e). Asterisk, P, 0.001 (two-tailed normal-theory test).

g, h, Quantitative real-time PCRwith reverse transcription analysis ofGata1
(g) and PU.1 (h) mRNA levels in Sca-1-sorted fractions. Means6 s.e.m. of
triplicates shown. Triple asterisk, P, 1025; double asterisk, P, 0.0002;
asterisk, P, 0.003 (one-tailed Student’s t-test). i, j, Western blot analysis of
Gata1 (i) and PU.1 (j) protein levels in Sca-1 fractions (lanes 3–5) andmock-
sorted cells (lane 6). TheMEL cell line (lane 1) was used as a positive control.
G1E and 503 (lane 2) cell lines were negative controls for Gata1 and PU.1,
respectively. Gapdh was the loading control.
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Figure 4 | Clonal heterogeneity of Sca-1 expression reflects transcriptome-
wide noise. Self-organizing maps of global gene expression for a subset of
2,997 genes visualized with the GEDI23 program for Sca-1low (L), Sca-1mid

(M), Sca-1high (H) fractions at 0 and 6 d after FACS isolation and for a
differentiated erythroid culture (7 d erythropoietin, Epo) and an untreated
control sample. Pixels in the same location within each GEDI map contain
the same minicluster of genes. The colour of pixels indicates the centroid
value of gene expression level for each minicluster in log10 units of signal.
Dissimilarity between transcriptomes is indicated above the horizontal
distance symbols. The Gata1-containing pixel is boxed in white.
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Supplementary Figure 6. Sca-1 clonal heterogeneity governs differentiation 

potential among individual subclones. Mean baseline Sca-1 expressions (histograms on 
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triangles, CL6_10; magenta squares, CL6_15; green circles, CL6_20; yellow triangles, 

CL6_14; black circles, CL6 and blue diamonds, CL6_5. Rank-order of differentiation 

kinetics for individual subclones is preserved across all four time points, p < 10
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progenitor cells have the highest PU.1mRNA levels (17-fold increase
over Sca-1low fraction), followed by the Sca-1mid (3.6-fold increase
over Sca-1low fraction) and Sca-1low fractions (Fig. 3h). These differ-
ences were paralleled by PU.1 protein levels (Fig. 3j). Furthermore,
myeloid differentiation rate was the highest among Sca-1high

cells, followed by Sca-1mid and Sca-1low (Fig. 3f), in response to
granulocyte–macrophage colony-stimulating factor (GM-CSF) and
interleukin 3 (IL-3; Methods and Supplementary Fig. 5). These
results show that within a clonal population of multipotent proge-
nitor cells, spontaneous non-genetic population heterogeneity
primes the cells for different lineage choices.

Because both Gata1 and PU.1 are pivotal lineage-specific tran-
scription factors, we asked whether the marked upregulation of
Gata1 and associated downregulation of PU.1 in the most eryth-
roid-prone Sca-1low cells reflect a particular cellular state in terms
of genome-wide gene expression. Microarray-based mRNA expres-
sion profiling on Sca-1low (L), Sca-1mid (M) and Sca-1high (H) frac-
tions immediately after sorting revealed that these three fractions
differed considerably in their transcriptomes (Fig. 4). Replicate
microarray measurements showed that the observed transcriptome
differences could not be attributed solely to experimental error
(Supplementary Fig. 9). Significance analysis of microarrays
(SAM)19 revealed .3,900 genes that were differentially expressed
between the Sca-1low and Sca-1high fractions at a stringent false detec-
tion rate of 1.5%. The distinct global gene expression profiles of the
three fractions converged to a common pattern within 6 days after
sorting, a progression that can be quantified by the inter-sample
distance metric D5 12R, where R is the Pearson correlation coef-
ficient. The distances between the three profiles decreased from
D(L2M)0 days5 0.027 to D(L2M)6 days5 0.009 and from
D(M2H)0 days5 0.061 to D(M2H)6 days5 0.012 (Fig. 4 and
Supplementary Table 1). Thus, the outlier populations reconstituted
the traits of the parental population not only with respect to their
distribution of Sca-1 expression (Fig. 2a) and differentiation rates
(Fig. 3b–e) but also with respect to their gene expression profiles
across thousands of genes. This global relaxation from both ends of
the parental spectrum towards the centre is predicted by themodel in
which a stable cell phenotype, such as the progenitor state here, is a
high-dimensional attractor state20. It also confirms that the Sca-1
outlier cells were not already irreversibly committed. Nevertheless,
Sca-1low cells exhibited a transcriptome that was clearly more similar
than the Sca-1high cells to the unsorted but maximally differentiated
cells, achieved by culture in erythropoietin for 7 days (7d_Epo)
(Fig. 4): D(L2 7d_Epo)5 0.079 versus D(H2 7d_Epo)5 0.158;
Supplementary Table 1. This is a remarkable feat given the spon-
taneity and stochasticity of the process that generated these
differentiation-prone outlier cells. In fact, with respect to 200 ‘differ-
entiation marker genes’ (Methods), only the Sca-1low cells were stat-
istically similar to the erythropoietin-treated cells (P, 33 10214,
pairwise t-test), whereas the Sca-1mid (P. 0.8) and Sca-1high

(P. 0.6) cells were not, further confirming the transcriptome simi-
larity between the Sca-1low and erythropoietin-treated cells, which
may be related to their increased Gata1 levels.
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Figure 3 | Clonal heterogeneity governs differentiation potential. a–f, Sca-
1low (Low, black), Sca-1mid (Mid, grey) and Sca-1high (High, white) fractions
(a) stimulated by erythropoietin (Epo, b) andGM-CSF (f) immediately after
isolation showed variable differentiation rates into the erythroid and
myeloid lineages, respectively. After 7, 14 and 21 days (d) of post-sort
culture, erythropoietin-treated cells showed convergence in both pre-
stimulation, baseline Sca-1 expression (Fig. 2a) and relative differentiation
rates (b–e). Asterisk, P, 0.001 (two-tailed normal-theory test).

g, h, Quantitative real-time PCRwith reverse transcription analysis ofGata1
(g) and PU.1 (h) mRNA levels in Sca-1-sorted fractions. Means6 s.e.m. of
triplicates shown. Triple asterisk, P, 1025; double asterisk, P, 0.0002;
asterisk, P, 0.003 (one-tailed Student’s t-test). i, j, Western blot analysis of
Gata1 (i) and PU.1 (j) protein levels in Sca-1 fractions (lanes 3–5) andmock-
sorted cells (lane 6). TheMEL cell line (lane 1) was used as a positive control.
G1E and 503 (lane 2) cell lines were negative controls for Gata1 and PU.1,
respectively. Gapdh was the loading control.
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Figure 4 | Clonal heterogeneity of Sca-1 expression reflects transcriptome-
wide noise. Self-organizing maps of global gene expression for a subset of
2,997 genes visualized with the GEDI23 program for Sca-1low (L), Sca-1mid

(M), Sca-1high (H) fractions at 0 and 6 d after FACS isolation and for a
differentiated erythroid culture (7 d erythropoietin, Epo) and an untreated
control sample. Pixels in the same location within each GEDI map contain
the same minicluster of genes. The colour of pixels indicates the centroid
value of gene expression level for each minicluster in log10 units of signal.
Dissimilarity between transcriptomes is indicated above the horizontal
distance symbols. The Gata1-containing pixel is boxed in white.
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progenitor cells have the highest PU.1mRNA levels (17-fold increase
over Sca-1low fraction), followed by the Sca-1mid (3.6-fold increase
over Sca-1low fraction) and Sca-1low fractions (Fig. 3h). These differ-
ences were paralleled by PU.1 protein levels (Fig. 3j). Furthermore,
myeloid differentiation rate was the highest among Sca-1high

cells, followed by Sca-1mid and Sca-1low (Fig. 3f), in response to
granulocyte–macrophage colony-stimulating factor (GM-CSF) and
interleukin 3 (IL-3; Methods and Supplementary Fig. 5). These
results show that within a clonal population of multipotent proge-
nitor cells, spontaneous non-genetic population heterogeneity
primes the cells for different lineage choices.

Because both Gata1 and PU.1 are pivotal lineage-specific tran-
scription factors, we asked whether the marked upregulation of
Gata1 and associated downregulation of PU.1 in the most eryth-
roid-prone Sca-1low cells reflect a particular cellular state in terms
of genome-wide gene expression. Microarray-based mRNA expres-
sion profiling on Sca-1low (L), Sca-1mid (M) and Sca-1high (H) frac-
tions immediately after sorting revealed that these three fractions
differed considerably in their transcriptomes (Fig. 4). Replicate
microarray measurements showed that the observed transcriptome
differences could not be attributed solely to experimental error
(Supplementary Fig. 9). Significance analysis of microarrays
(SAM)19 revealed .3,900 genes that were differentially expressed
between the Sca-1low and Sca-1high fractions at a stringent false detec-
tion rate of 1.5%. The distinct global gene expression profiles of the
three fractions converged to a common pattern within 6 days after
sorting, a progression that can be quantified by the inter-sample
distance metric D5 12R, where R is the Pearson correlation coef-
ficient. The distances between the three profiles decreased from
D(L2M)0 days5 0.027 to D(L2M)6 days5 0.009 and from
D(M2H)0 days5 0.061 to D(M2H)6 days5 0.012 (Fig. 4 and
Supplementary Table 1). Thus, the outlier populations reconstituted
the traits of the parental population not only with respect to their
distribution of Sca-1 expression (Fig. 2a) and differentiation rates
(Fig. 3b–e) but also with respect to their gene expression profiles
across thousands of genes. This global relaxation from both ends of
the parental spectrum towards the centre is predicted by themodel in
which a stable cell phenotype, such as the progenitor state here, is a
high-dimensional attractor state20. It also confirms that the Sca-1
outlier cells were not already irreversibly committed. Nevertheless,
Sca-1low cells exhibited a transcriptome that was clearly more similar
than the Sca-1high cells to the unsorted but maximally differentiated
cells, achieved by culture in erythropoietin for 7 days (7d_Epo)
(Fig. 4): D(L2 7d_Epo)5 0.079 versus D(H2 7d_Epo)5 0.158;
Supplementary Table 1. This is a remarkable feat given the spon-
taneity and stochasticity of the process that generated these
differentiation-prone outlier cells. In fact, with respect to 200 ‘differ-
entiation marker genes’ (Methods), only the Sca-1low cells were stat-
istically similar to the erythropoietin-treated cells (P, 33 10214,
pairwise t-test), whereas the Sca-1mid (P. 0.8) and Sca-1high

(P. 0.6) cells were not, further confirming the transcriptome simi-
larity between the Sca-1low and erythropoietin-treated cells, which
may be related to their increased Gata1 levels.
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Figure 3 | Clonal heterogeneity governs differentiation potential. a–f, Sca-
1low (Low, black), Sca-1mid (Mid, grey) and Sca-1high (High, white) fractions
(a) stimulated by erythropoietin (Epo, b) andGM-CSF (f) immediately after
isolation showed variable differentiation rates into the erythroid and
myeloid lineages, respectively. After 7, 14 and 21 days (d) of post-sort
culture, erythropoietin-treated cells showed convergence in both pre-
stimulation, baseline Sca-1 expression (Fig. 2a) and relative differentiation
rates (b–e). Asterisk, P, 0.001 (two-tailed normal-theory test).

g, h, Quantitative real-time PCRwith reverse transcription analysis ofGata1
(g) and PU.1 (h) mRNA levels in Sca-1-sorted fractions. Means6 s.e.m. of
triplicates shown. Triple asterisk, P, 1025; double asterisk, P, 0.0002;
asterisk, P, 0.003 (one-tailed Student’s t-test). i, j, Western blot analysis of
Gata1 (i) and PU.1 (j) protein levels in Sca-1 fractions (lanes 3–5) andmock-
sorted cells (lane 6). TheMEL cell line (lane 1) was used as a positive control.
G1E and 503 (lane 2) cell lines were negative controls for Gata1 and PU.1,
respectively. Gapdh was the loading control.
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Figure 4 | Clonal heterogeneity of Sca-1 expression reflects transcriptome-
wide noise. Self-organizing maps of global gene expression for a subset of
2,997 genes visualized with the GEDI23 program for Sca-1low (L), Sca-1mid

(M), Sca-1high (H) fractions at 0 and 6 d after FACS isolation and for a
differentiated erythroid culture (7 d erythropoietin, Epo) and an untreated
control sample. Pixels in the same location within each GEDI map contain
the same minicluster of genes. The colour of pixels indicates the centroid
value of gene expression level for each minicluster in log10 units of signal.
Dissimilarity between transcriptomes is indicated above the horizontal
distance symbols. The Gata1-containing pixel is boxed in white.
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Outlook
Strengths:!

I admit I am biased: it’s beautiful (inspiring is a 
more accepted way of putting it...)!
it really asks us to keep in mind the complexity and 
non-linear nature of the regulatory network!
supports the idea of cell states as stable attractors
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Weaknesses:!
??? (I have no expertise to judge the 
experimental techniques)

More coming ...!
Siu Huang’s lab: working on switching cancer cell lines back to 
normal!
Jim Collins’s lab (bioengineer, leader in cellular noise control) with 
first author Hanna Chang: noise-assisted embryonic stem cell 
differentiation
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